Light-Mediated TIM Degradation within Drosophila Pacemaker Neurons (s-LNvs) Is Neither Necessary nor Sufficient for Delay Zone Phase Shifts

نویسندگان

  • Chih-Hang Anthony Tang
  • Erica Hinteregger
  • Yuhua Shang
  • Michael Rosbash
چکیده

Circadian systems are entrained and phase shifted by light. In Drosophila, the model of light-mediated phase shifting begins with photon capture by CRYPTOCHROME (CRY) followed by rapid TIMELESS (TIM) degradation. In this study, we focused on phase delays and assayed TIM degradation within individual brain clock neurons in response to light pulses in the early night. Surprisingly, there was no detectable change in TIM staining intensity within the eight pacemaker s-LNvs. This indicates that TIM degradation within s-LNvs is not necessary for phase delays, and similar assays in other genotypes indicate that it is also not sufficient. In contrast, more dorsal circadian neurons appear light-sensitive in the early night. Because CRY is still necessary within the s-LNvs for phase shifting, the results challenge the canonical cell-autonomous molecular model and raise the question of how the pacemaker neuron transcription-translation clock is reset by light in the early night.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

Graphical Abstract Highlights d Calcium and the protease SOL trigger TIM degradation in response to thermal input d Thermal TIM degradation resets the Drosophila circadian pacemaker d TIM integrates light and temperature input d In mammals, the SOL homolog also impacts circadian thermal responses In Brief Temperature phase shifts the Drosophila circadian clock through the regulated degradation ...

متن کامل

RETRACTED: Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mecha...

متن کامل

The COP9 signalosome is required for light-dependent timeless degradation and Drosophila clock resetting.

The ubiquitin-proteasome system plays a major role in the rhythmic accumulation and turnover of molecular clock components. In turn, these approximately 24 h molecular rhythms drive circadian rhythms of behavior and physiology. In Drosophila, the ubiquitin-proteasome system also plays a critical role in light-dependent degradation of the clock protein Timeless (TIM), a key step in the entrainme...

متن کامل

Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila.

To compare circadian gene expression within highly discrete neuronal populations, we separately purified and characterized two adjacent but distinct groups of Drosophila adult circadian neurons: the 8 small and 10 large PDF-expressing ventral lateral neurons (s-LNvs and l-LNvs, respectively). The s-LNvs are the principal circadian pacemaker cells, whereas recent evidence indicates that the l-LN...

متن کامل

Accelerated degradation of perS protein provides insight into light-mediated phase shifting.

Phase resetting by light is an important feature of circadian rhythms, and the current Drosophila model focuses on light-mediated degradation of the clock protein TIMELESS (TIM). PERIOD (PER) is the binding partner of TIM and a major repressor of the molecular clock, but direct evidence of PER in phase resetting is lacking. Because light sensitivity of the per(S) short period mutant strain is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2010